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The increasing use of games as a convenient metaphor for modeling interac-
tions has spurred the growth of a broad variety of game definitions in Computer
Science. Furthermore, in the presentation of games many related concepts are
used, e.g. move, position, play, turn, winning condition, payoff function, strat-
egy, etc. None has a unique definition. Some, but not always the same, are taken
as primitive while the others are reduced to them. And many more properties
need to be specified before the kind of game one is interested in is actually pinned
down, e.g.: perfect knowledge, zero-sum, chance, number of players, finiteness,
determinacy, etc. All this together with the wide gamut of games arising in real
life calls for a unifying foundational approach to games. In [HL09], we started
such a programme using very unbiased foundational tools, namely algebras and
coalgebras.

We build upon Conway’s notion of game. It provides an elementary but
sufficiently abstract notion of game amenable to a rich algebraic-coalgebraic
treatment because of the special role that sums of games play in this theory.

Conway games [Con01] are combinatorial games, namely no chance 2-player
games, the two players being conventionally called Left (L) and Right (R). Such
games have positions, and in any position there are rules which restrict L to move
to any of certain positions, called the Left positions, while R may similarly move
only to certain positions, called the Right positions. L and R move in turn, the
player who plays first is denoted by I, while the one playing second is denoted
by II. Notice that L or R can be either I or II and conversely. The need for this
extra generality is due to the fact that in most games each player has a different
set of options. Moreover, as we will see in the definition of sums of games, there
may not be a strict alternation of moves in any given component.

The game is of perfect knowledge, i.e. all positions are public to both players.
The game ends when one of the players has no move. In normal play the other
player is the winner, while in misère play, the winner is the very player himself.
The payoff function yields only 0 or 1. Many games played on boards are combi-
natorial games, e.g. Nim, Domineering, Go, Chess. Games, like Nim, where for
every position both players have the same set of moves, are called impartial. More
general games, like Domineering, Go, Chess, where L and R may have different
sets of moves are called partizan. Many notions of games such as those which arise
in Set Theory, in Automata Theory, or in Semantics of Programming Languages
can be conveniently encoded in Conway’s format. In [HL09], we revisit Conway’s
theory of terminating games and winning strategies under an algebraic perspec-



tive, and we introduce and study hypergames, i.e. potentially infinite games, and
non-losing strategies, using coalgebraic methods. Especially in view of applica-
tions, potentially infinite, non-terminating interactions are even more important
than finite ones. Traditionally, as in the automata-theoretic literature, see e.g.
[Tho02], and denotational game semantics, [AJ94], infinite plays are taken to be
winning for one of the players. Differently, we take the more natural view that
all infinite plays are draws. Recently, this view has received attention also in the
context of model checking for the µ-calculus, see e.g. [GLLS07].

Hypergames are defined as a final coalgebra, and operations on games can
be naturally extended to hypergames, by defining them as final morphisms.

In the present work, we pursue further the investigation started in [HL09],
by focusing on the notions of equivalence and congruence. This approach allows
a unifying and perspicuous rephrasing of many results in Conways‘s theory of
terminating games and winning strategies. For instance, the fact that a game
has a winning strategy for the second player amounts to checking whether it is
equivalent to the empty game. In the case of hypergames and non-losing strate-
gies, congruences suggest the correct generalizations of the results for games. In
both scenarios, focusing on equivalences allows for many intriguing results and
conjectures, as shown in [HL09]. Congruences in games arise in many concep-
tually independent ways, and, as often happens in semantics, the gist of many
results amounts to showing the coincidence of two congruences.

In dealing with games we can have various notions of equivalences, and hence
possible congruences w.r.t. some given game constructors:

– The final equivalence induced by the very notion of hypergame, which ab-
stracts superficial features of moves and hypergames.

– Contextual equivalences obtained by observing the outcome of a game, i.e.
which player has a winning strategy, when the game is plugged in particular
classes of contexts, in the style of [HL09]. This definition yields immediately
a congruence, which, however, is rather difficult to establish since one is
required to consider all possible contexts. Alternate definitions which use
only restricted classes of basic contexts are therefore rather valuable.

– Categorical equivalences defined by the existence of suitable strategies, viewed
as morphisms, in the style of Joyal’s symmetric monoidal closed category,
[Joy77]. This definition allows to establish equivalence looking only at the
behaviour of a single game.

– Order equivalences defined through an inductively defined order relationship,
in the style of Conway‘s surreal numbers.

– Denotational semantical equivalences, obtained by interpreting games in a
subclass of canonical representatives, in the style of Grundy numbers for im-
partial games, [Gru39,Spra35]. In semantical terms, one can say that Grundy
numbers provide a fully abstract denotational semantics to impartial games.

– Operational semantical equivalences obtained by defining the semantics through
a simplification, i.e. re-writing process, in the style of [Con01], Theorem 69.
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All the above equivalences do coincide on Conway’s games, as shown in
[HL09], but the situation is much more rich and intriguing in the case of hy-
pergames.

In the present work, first we introduce and study contextual equivalences on
hypergames, obtained by varying the class of contexts and the players for which
we observe the existence of a winning strategy. Then we study categorical equiv-
alences on hypergames. Since the immediate generalization of Joyal‘s definition
to non-losing strategies does not yield a category, we introduce a somewhat
weaker categorical equivalence based on the new notion of balanced (non-losing)
strategy. Quite interestingly, this categorical equivalence captures the equiva-
lence introduced in [BCG82], Chapter 11, on loopy games. We briefly discuss
alternative notions of sum, all of which admit coalgebraic characterizations, and
corresponding contextual equivalences.

Finally, a number of open problems and directions for future work are out-
lined.
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